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Complementarity in the Study of Transmission Lines*

G. H. OWYANG~ AND RONOLD KING-f

Summar~—The principle of complementarily is applied to the

slot transmission line. The properties of a dual circuit are investi-

gated. The pairs of several possible duals for a given configuration

are correlated and new quantities are defined for use with different

types of circuits. A complete parallelism between the two-wire line

and the two-slot line is established for the ideal cases and is ex-

tended by approximation to include the practical cases.

Measurements were made with a two-slot transmission line and

its associated probing system. The method of testing the line for

balance is discussed. The transverse distribution of the longitudinal

current and the attenuation constant were measured.

The analogy between the steady-state field in a conducting me-

dium and the electrostatic field in a &lelectric is investigated. The ex-

pressions for the constants of a two-slot line are given in a form that

permits a ready evaluation from experimental data obtained with the

electrolytic tank. The measured results are compared with theoretical

values.

1. THE PRINCIPLE OF COMPLEMENTARITY

A. Introduction

I

F two physically different phenomena, A and B, are

described by the same mathematical formulation,

quantitative conclusions may be drawn about A

from a study of B. This is true of complementary prob-

lems in electromagnetic theory, in which the field about

a configuration A of slots in a perfectly conducting in-

finite plane of zero thickness is related to the field about

a configuration B of conducting strips arranged in free

space to correspond exactly to the slots in A.

B. Duality Between the Elect~omagnetic Field of an

Electric and a Magnetic Source

Consider groups of perfect electric and perfect mag-

netic conductors in a homogeneous medium character-

ized by the complex permittivity c = e, —jr,/u, and the

permeability M (see Fig. 1). SI, S2, . “ are the surfaces

of the electric conductors, S1*, SZ*, . . . of the magnetic

conductors. The appropriately generalized field and

continuity equations are

curl E = — J* — jo,uH, div E = p/e; (la)

curl H = J + jticEJ div H = p*/,u; (lb)

div J+jap=O div~ +jap” =’0. (lc)

(The symbols are defined in Fig. 4.) The boundary con-

ditions on the surfaces of the conductors are

fixE=fi.H=() (2a)

on the electric conductors S1, S2, . . . , and

tiXH=h. EZO (2b)
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Fig. 1

on the magnetic conductors S1*, SZ*, . . . , where n is a

unit outward normal.

It can be shown that an interchange of the electric

and magnetic sources and conductors in a given system

results in an interchange of the E- and H-fields. In par-

ticular, if

J2 = – q.J,*, J2* = {.J,, (3a)

p2 = — qepl, P2* = j-epl, (3b)

where <,2 = l/q,2 = p/c, the field vectors are given by

EZ = – {, HI, Hz = ~.El. (4)

The subscripts 1 and 2 refer to cases I and II (Fig. 1),

respectively.

C. Fields with E-symmetry and H-symmetry.

In rectangular coordinates the field vectors E and H

are E-symmetric (or H-antisymmetric) with respect to

the plane x = O if

{

–l?. (-x),
Eu(x) =

E*,(–x),

{

H.(–x),
H,,(z) =

–zZ.(-z),

The shorthand notations F(x)

u=yorz

~=~

u=yorz. (5)

and F( — SC) are used for

F(x, y, z) and F( –x, y, z). The corresponding field vec-

tors with ~-symmetry (or E-antisymmetry) are

{

E.(–z), ~=~
Eu(x) =

–E.(–x), u=yorz,

{

–H.(–z), ~=~
H.(x) =

Hw(–x), u=yorz. (6)

With these definitions, any function F(x) may be ex-

pressed as the sum of symmetric and antisymmetric

components in the form F(x) = F, (x) + Fa(x) where

F,(x) = i{ ~[F.(x) T F.(–x)] + @[Fu(z) i Fu(–x)]

+ 2[F=(Z) + F*(–x)]}.

i =s for the upper signs, i =a for the lower signs.

(7)
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With (5)–(7) it follows directly that for a structure in

space that is symmetric, the field equations are inde-

pendent of the sign of x and may be separated into

E-symmetric and H-symmetric parts. These are, for

H-symmetry,

curl ,73.(x) + ykp~,(x) = — ~s*(z), (8a)

curl 2Y, (*) — @&(x) = J.*(x) ; (8b)

for E-symmetry,

curl E,(z) + jqu~~(x) = — J~*(z), (8c)

curl Efa(z) – jowl?.(z) = J,(x). (8d)

It follows from (5) that at x = O,

E,.(O) = H.,(O) = H.,(O) = O (9)

so that in a homogeneous medium the E-symmetric field

satisfies the boundary conditions (2) of a perfect mag-

netic conductor at x = O, and is not disturbed by the in-

sertion of a plane sheet of perfect magnetic conductor of

arbitrary shape and size in the plane of symmetry.

Similarly, from (6)

Ea.(o) = l?.,(o) = H..(o) = o, (lo)

so that the H-symmetric field satisfies the boundary con-

ditions (2) of a perfect electric conductor at x = O and

is undisturbed by the insertion of a plane sheet of perfect

electric conductor in the plane of symmetry.

D. Duality Between a Thin Disk and a Hole in a

Thin Sheet

Let a thin disk made of a perfect electric conductor

be placed in the plane of symmetry (t= O) in a homo-

geneous medium as shown in Fig. 2(a). In this medium

there exists an electromagnetic field maintained by a

symmetric distribution of electric currents J,(x). It fol-

lows from (8) that the field is E-symmetric so that it

behaves just as if a magnetic conductor were located in

the plane of symmetry outside the disk as shown in

Fig. 2(b).

If the electric and magnetic conductors are inter-

changed, Fig. 2(d) is obtained. Since the regions x >0

and x <O are separated by the sheets of conductor, (3)

may be used with opposite signs in these two regions.

That is, the distribution of magnetic current is anti-

symmetric for the new system, so that it satisfies the

following relations:

Ja~*(z) = feJs3(z), J.4*(–z) = – reJd-x), (11)

where the subscripts 3 and 4 refer to the systems before

and after the change. Since the excitation is by anti-

symmetric magnetic currents, the field has E-symmetry

and it is immaterial whether the sheet of magnetic con-

ductor is present or not. Therefore, Figs. 2(c) and 2(d)

represent equivalent configurations and the formulas

shown in the figure follow directly from (3) and (4).

The following situations have been shown to be duals:

a thin disk of perfect electric conductor in the plane of

in the Study of Transmission Lines 173

Case JIl Case D1
Symmetric Electric Current Anti -Sym. Mognetic Current

3,A3: :4(,f#-=(x)

,:..

~ Electric Conductor
(c)

(a)

~ Magnetic Conductor

Fig. 2

x >0

(b) (d)

-Duality between metallic disk and hole in metallic screen.

Field: E-symmetry with respect to ~== O plane

E.(x) = – IL-x) H.(x) = H=(-- $)

E.(x) = Eti(-%) H.(x) = – &/(–x)

E,(x) = E.(–z) Hz(x) = – H.(–x)

%<0
Ja4*(*)= re~s,(x) v/mz J.,*($) = – rJdx) rJ/?@
.&(z) = – r.H3(x) v/m E1(x) = c.H3(z) v/nr.”

H,(x) = T,E3(x) a~m H4(x) = – q,E&t) a/m

symmetry of an E-symmetric field that is excited by a

symmetrical distribution of electric currents; an infinite

sheet of electric conductor with a hole that lhas the same

size and shape as the disk if the sheet is placed in the

plane of symmetry of an E-symmetric field that is ex-

cited by an antisymmetric distribution of magnetic

currents.

In a similar manner, it can be shown that a ma,gnetic

conducting disk in an electromagnetic field that is ex-

cited by symmetric magnetic currents is the dual of a

similar hole in a magnetic conducting sheet located in a

field that is generated by an antisymmetric distribution

of electric currents. The arrangements for these two

cases are shown in Fig. 3.

E. Terminology

Since several dual configurations may be defined for

a given structure, it is desirable to la’bel each type of

network unambiguously. The circuit made of ordinary

electrically conducting strips is the actual elect~ic circuit

or the electric strip circuit, the complementary circuit

made of fictitious magnetic strips is the fictitious mag-

netic circuit or the magnetic strip circuit, and the comple-

mentary circuit obtained by cutting slots in a metallic
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Case 1? Case~
Symmetric Magnetic Current Anti -sym. Electric Current
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A

x
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~ Elecfric Conduc+or

~ Magnetic Conductor
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Fig. 3—Duality between magnetic disk and hole in magnetic screen,

Field: H-symmetry with respect to x = O plane

I&(x) = Ez(–z) 11.(.) = – H.(–z)

E,(z) = – Eti(-z) /z.(*) = H,(– x)

E.(x) = – E=(–x) H.(z) = II,(-*)

surface is the slot ciycuit. The dual obtained by replacing

a given original configuration of conductors by its com-

plement is called the physical dual. For example, a

metallic disk is the physical dual of a hole of similar

shape in a metallic screen and vice versa. A system of

electric conductors and a similar system of magnetic

conductors are ideal or jktitious duals. A magnetic strip

is the ideal dual of a geometrically identical electric

strip. A new set of quantities is needed for use in fic-

titious duals. These are given conventional names pre-

ceded by the world “magnetic. 7’ An asterisk is attached

to the symbol for such a magnetic quantity for identi-

fication, as shown in Fig. 4.

The quantities used to describe a slot circuit are pre-

ceded by the word ‘(complementary” and their symbols

are primed to distinguish them from those for electric

circuits. The complementary currents and charges are,

of course, those maintained on the complementary con-

ducting surfaces. Complementary quantities are listed

in Fig. 4.

The duality between pairs of circuits and associated

equations is illustrated in Fig. 4. Note that the quantities

listed for the electric and magnetic strip circuits are

duals. Corresponding quantities for the slot and the

magnetic strip circuits are not duals, but some of them

are equivalent as indicated in parentheses.

F. Generalized Two-Slot T~ansmission-Line Theory

An ideal two-slot transmission line consists of two par-

allel slots that are cut in an infinitely thin, perfectly con-

ducting sheet of infinite size (see Fig. 5). The ideal (al-

though physically fictitious) dual consists of two parallel

thin strips, made of a perfect magnetic conductor, that

lie in the xy-plane, symmetrically located with respect to

the x-axis and with their centers separated by a distance

b. If the width a of the strip satisfies the inequalities,

60a<<l, bz>>a’, it is proper to define a total axial mag-

netic current and a total magnetic charge per unit

length and to assume that their transverse distributions

are approximately symmetrical with respect to the

center of each strip. In order to make radiation negligi-

ble, the condition (/30b)’<<1 is imposed,

At distances from both ends of the transmission line

that are large compared with the separation b of the

strips, the following relational are obtained for the mag-

netic scalar and vector potential differences V*(W) and

Wz” (w). The same formulas apply to the electric po-

tentials if the asterisks are omitted.

~ V*(W) – -ye*’v*(w) = 0,
dwz

(12a)

~ W.*(W) – ‘ye*’l’’va*(w) = o,
dwz

(12b)

(13)I.*(W) = ~; : V*(W)

where TO*Z = YO*ZO*. The magnetic line constants (with

asterisk) and their electric duals are summarized as

follows :

ZO* =

Zo =

yo* =

yo =

?’0* + jJo* = (j~+r) in (b/a),

(j2qIJ/r) in (b/a); (14a)

juco* = (jq.m-)/in (b/a),

go + jOCO = (join)/ in (b/a). (14b)

Note that c = e, –ju./ti. The magnetic potentials V*(W)

and WZ* (w) for the ideal dual of the two-slot line satisfy

the conventional transmission-line equations just as do

the potentials V(w) and 17z(w) for the two-wire line.

The line constants for the magnetic strips are similar to

those for electric strips. The approximate solution for

the magnetic current and scalar potential difference

may be obtained with a corrective terminal-zone net-

work as for a two-wire line.2

Equivalent circuits of the magnetic strip line and the

slot line are shown in Fig. 6.

1 R. W. P. King, “T’ransrnisSion-Line Theory, ” McGraw-Hill
Book Co., Inc., New York, N. Y., p. 13; 1955.

2 Ibid., p. 58.
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Electric Circuit ~r Electric Strip Circuit

Field: E-symmetry with respect to z= O plane

E-field E v/m

H-field H a/m

Current Density (Volume) ~ a/m2

Current Density (Surface) K a/m

Charge Density (Volume) p as/ma

Charge Density (Surface) ~ as/mz

Potential Difference

sV = ‘Ed.
b

Current

f

d

J
d

1, = ii XH.dx=— Kvdz
. .

Impedance

v~=—
I

Capacitance per unit length

c

Inductance per unit length

1

z

a

ohm

f/m

h/m

Field Equations: Boundary Conditions:

VXH=J+j.eE iix H=-K

VX E= –jcowH hxE=o
V.H=O ?2. H=O

V. E=&
–1

ti. E=-v
E G

Potential Functions:

f
A = ~: ~JKOdr’

Fictitious Magnetic Circuit or
Magnetic Strip Circuit

Ideal or Fictitious Dual

Field: H-symmetry with respect to z= O plane

Magnetic E-field E*(=H’) a/wt

Magnetic H-field H*(= E’) v/m

Magnetic Current Density
(Volume) J* v/m~

Magnetic Current Density
(Surface) K* v/m

Magnetic Charge Density
(Volume) P* vs/mS

Magnetic Charge Density
(Surface) V* vs/m~

Magnetic Potential Difference

v“ =
f

k*dx(=I’) a
b

Magnetic Current

s

d

f

d

Iv’ = ?? XH*.dx= Kvdz(= V’) V
. c

Magnetic Impedance

Z* = ; (= #) mho

Magnetic Capacitance per unit length

C*(= 1’) h/m

Magnetic Inductance per unit length

1*(= 6J) f/m

Field Equations: Boundary Conditions:

x = –J* –juVE* ?LXH* =K*

VX E* = jJeH* ?2XE*=0
V. H*=O fi. H*=O

v.E*=~p* h. E* = ~~ T*
P M

Magnetic Potential Functions:

H*=~~VXA*
e

Slot Circuit

1
Physical Dual (or Original)

Field: E-symmetry with respect to z= O plane

Complementary H-field

Complementary E-field

Complementary Current
Density (Volume)

Complementary Current
Density (Surface)

Complementary Charge
Density (Volume)

Complementary Charge
Density (Surface)

Complementary Current

H’( = E*) a/m

E’( =H”) o/m

J’ ~lm’

K’ a~m

P’ as/ma

7 as/m2

J fIv) = “Ax H’.& = – cKgdx(=V*) a
b b

Complementary Potential Difference

f
Vz= dE’.,dx(=I*) v

c

Complementary Transverse Admittance

J= ; (= Z*)

Complementary Inductance per

Jf(=c*)

mho

unit length

h/m

Complementary Transverse Capacitance per
unit length

~l(=lk
) f/m

Field Equations: Boundary Conditions:

V x H’ = J’ +J2.xE’ fix H! =. — K’

V X E’ = jwH’ ?ix E’=o
V. Hf=o fi. HJ=o

v.E~=&, –1
r? . E’=:—q’

e c

Complementary Potential Functions:

Hf=!_VxAf

P

c.
where 6=%+7, Ko = ~ e–iB@, R2 = (Z – X)2 + (y – Y’)z + (z – z’)’

jw K

Fig. 4—Complementarity between strip and slot circuits.
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t—-—---x~w-----li
(a)

(b)

Fig. 5—Arrangement of a two-slot line.

L*+1* *1

\\\\\\\\\\\<

C*

-r 1-

Fig. 6—Equivalent circuits of a two-slot line; diagonal shading
indicates magnetic conductors, dots indicate electric conductors.

G. Conclusion

A parallelism between the two-slot line and the two-

strip line has been established. Consequently, the well-

known solution of the two-wire line equations, as well

as complementary measuring techniques, may be ap-

plied to the two-slot line. The line parameters that have

been derived are true for infinitely thin slots. However,

it can be showna that the characteristic impedance 21.

of a very thin two-strip line is given by

Z,c = (l/c) 1/2 = (po/eo)’/’K(kK(k(),), (15)

s G. H. Owyang and T, T. Wu, “The approximate parameters of
slot lines and their complements, ” IRE TRANS. ON ANTENNAS AND
PROFANATION, vol, AP-6, pp. 49–55; January, 1958.

where K(k) is the complete elliptic integral of the first

kind, k = aO/bO is the modulus, k’2 = 1 – k2, 2a0 is the

distance between the inner edges of the strips, and 2b0

is the distance between the outer edges of the strips.

Subject to the condition that the width of the strips is

very small compared to the distance between centers so

that ao ~ bo, the characteristic impedance is approxi-

mately

Z,c ~ (po/co)’/2m-1 in (4A/6), (16)

where 8 = bo —ao is the width of the strip and A = bo+ao

is the distance between their centers. From transmission-

Iine theory, the characteristic impedance of a two-wire

line of circular conductors is

Z,, = (Po/~0) ‘/2r-1 in (b/a) (17)

where b is the distance between the centers of the wires

and u is the radius of each. The two strip line evidently

behaves like a two-wire line with the same distances be-

tween the centers of the conductors and with wires of

radius equal to one-quarter the width of the strips.

II. EXPERIMENTAL STUDY OF THE TWO-SLOT

TRANSMISSION LINE

A. The &rui@nent

The two-slot transmission line is bounded by three

pieces of aluminum sheet and an aluminum strip. The

ground plane has the over-all dimensions of 6 feet 2

inches by 12 feet 1 inch; it is supported horizontally by

a wooden framework at a height about halfway between

the floor and the ceiling. The thickness of the aluminum

is ~ inch; the center strip is $ inch by $ inch in cross sec-

tion, 7+ feet in length, and supported by a tapered strip

of polystyrene that rests on a wooden support.

Several driving devices for the two-slot line were

tested. A two-wire line drive [see Fig. 7(a)] was found

to be unsatisfactory since the slotted ground plane is an

unsymmetrical load that unbalances the two-wire line

and causes undesirable radiation. A microstrip drive

[see Fig. 7(b) ] has the advantage of simplicity in con-

struction and compactness. I t consists of a conductor

separated from the ground plane by a thin sheet of di-

electric. The conductor can be either a flat strip or a

wire of small diameter. This conductor is connected to

the center-strip of the two-slot line. A coaxial-line drive

[see Fig. 7(c) ] consists of a piece of coaxial line with its

outer conductor deformed into a rectangular shape so

that it will fit smoothly onto the ground plane. A ~-inch

by ~-inch waveguide was found to be suitable for the

outer conductor; a &-inch diameter brass rod was used

as the inner conductor. Two short-circuiting plungers,

one on each side of the point of feeding, were provided

for matching.

Two different probing systems were employed in the

research: the surface-probe system and the enclosed

probe system. The surface-probe system consists of a

carrier mounted on and movable along a cross-beam,
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the supporting structure of which rolls on circular steel

tracks which are mounted along the sides of the wooden

framework. The connection from the probe carrier to

the probe is made by a section of stiff transmission line

which consists of a piece of a ~-inch O. D. brass tubing

slipped over a RG-58 coaxial cable. This brass tubing is

threaded and slotted at the upper end to provide a

height adjustment.

The enclosed-probe system consists of a movable

probe that projects through a slot in a waveguide

(~ inch by ~ inch) which forms the edge of the aluminum

sheet. In this system, only the probe itself is exposed to

the field to be measured; the connection to the probe and

the driving mechanism are either shielded or far away

from the point where the measurement is being made.

Thus the disturbance caused by the presence of the

probing system is minimized and, in addition, the de-

gree of flatness of the metallic sheets has little effect on

the signal picked up by the probe.

B. Balancing the Two-Slot Transmission Line

An efficient transmission line should radiate little

power. It is well known in two-wire line theory that un-

balanced currents radiate. This is also true of a two-slot

line in which the currents on the two side plates are un-

equal at corresponding points. A simple method to de-

termine whether a two-slot line is balanced or not is to

record the response of the detector while the probe is

moved perpendicularly across the line. The response

curve should be symmetrical with respect to the line if

a balanced condition is maintained. However, the sym-

metry of the measured response curve may be affected

by the slight variation in the flatness of the ground

screen so that an alternative method is desirable.

It is very difficult, if not impossible, to obtain two

exactly identical probes; therefore, the direct compari-

son of the signals picked up by two probes in the two

slots will give little information about the conditic~n of

balance of the line. With two probes which have slightly

different gains, the symmetry of the line current maybe

determined by the method of cancellation. This is ac-

complished by adjusting the phases of the signals from

the two probes so that the transmission-line modes are

opposite in phase while the radiation modes, if they

exist, are in phase. Thus a constant resultant signal

along the line means that the line is balanced, ancl the

existence of a standing wave in the resultant signal along

the line indicates the presence of an unbalanced current

in a radiation mode. The probes used are those enclosed

in the edges of the two sideplates. These probes are

placed at a cross section where the field is strong and

are tuned for maximum signal separately by adjusting

the tuning stubs. The reading on the variable standard

attenuator is recorded. The two circuits are then jc)ined

together through a tee with a line stretcher inserted in

one probe-circuit. The line stretcher is adjusted for

minimum signal and the attenuation of the standard

attenuator is reduced to increase the sensitivity of the

detector. One of the double-stub tuners may also be ad-

j usted if it helps to decrease the signal. ‘This procedure

may be repeated until a true minimum is obtained, The

probes are then moved simultaneously along the entire

line and the detected signal is noted. Negligible varia-

tions in the minimum signal were observed and this

minimum signal was more than fifty decibels below (al-

most noise level) the signal level of either one of the

probes. A short piece of lossy cable is inserted in each

probe circuit to reduce the possible coupling between

the probes.

C. The Transverse Distribution of the Longitudinal

Current on a Two-Slot Line

The transverse distribution of the Iongitudinall cur-

rent on the metallic surface bounding t’he two-slot line

is measured by moving a surface probe in the direction

perpendicular to the slots. The probe is of the shielded-

Ioop type and is oriented with the normal to the plane of

the loop parallel to the direction of its mcwennent. Owing

to the fact that a loop probe measures the average flux

encircled by it, a rectangular loop with round, curved,

short sides is used. A loop of such shape has an advan-

tage over a circular loop in being able to measure the

average field of a point closer to the metal surface with

the same clearance between the probe and the surface.

Both the amplitude and the phase of the current are

shown in Fig. 8.

The current in the center strip is opposite in phase to

that in the side plates and the currents in the two side

plates are in phase. The measurements show the current

to be concentrated near the edges as expected. The

measured apparent decrease in current toward the axis

of the center strip is very sensitive to the height of the
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Fig. 8—Distribution of longitudinal current in a two-slot line

probe. If the maximum amplitude of the longitudinal

current is denoted by 1~, the amplitude of the current

along the center line of the center strip by I,, and the

distance between the center of the loop probe to the

conducting surface by lq then the observed results are

as follows:

h 0.0038 k 0.0064 k 0.0076 A

1.
0.55 0.82 0.98

<

At h = 0.0038 A, the loop is almost in contact with the

conducting surface. If these current ratios are plotted

against the distance h and the curve so obtained is

extrapolated to the point k = O, it is found that the ratio

I./I~ of the surface current density in the center strip

is approximately 0.20. From the distribution of the elec-

tromagnetic field it is expected that I./I~ has a mini-

mum at the center of the strip and the measurements do

verify this fact, Qualitatively, one could imagine the

two-slot line to be roughly equivalent to a coplanar

four-conductor transmission line. The four conductors

are located near the edges of the conducting sheets and

the strip. The total currents in the inner two conductors

are equal in amplitude and phase; they are equal in

amplitude as those in the outer two conductors, but op-

posite in phase. The current on the side plates decays

very rapidly as the distance from the slot increases.

This current drops below one-half of one per cent of the

peak value within one-quarter of a wavelength from the

center of the center strip. It is interesting to note that

this decay is almost exponential with distance.

Owing to the nonuniformity in the amplitude of the

field configuration, it is not possible to measure the

transverse distribution of the transverse current by

simply rotating the loop-probe ninety degrees from the

position used for measuring the longitudinal current. In

this position the loop may respond in its transverse di-

pole mode to the large E-field in addition to the usual

response to the magnetic (or differential electric) field.

This was verified by repeating the measurement with a

dipole probe with the axis of the dipole perpendicular

to the slot; a curve similar to that obtained with the loop

probe was obtained.

D. The Measurement of the A ttenuution Constant

It is usually very difficult to measure the attenuation

constant of a low-loss transmission line, However, if the

location of the probe can be measured very accurately

along the line, then the method based upon the width

of the distribution curve near its minimum is applicable.

This method involves the determination of the width

Awn of the distribution curve at a convenient power

level p (usually 92=2 is chosen) above the minimum

point at two different locations, w. and w~+~. The value

of the attenuation constant a is given byh

B Awn — Aw,hm
~=

2(p~ – 1)112 w. – Wn+m
nepers per meter, (18)

In the evaluation of the attenuation constant, the por-

tion of the distribution curve near the minimum point

is plotted out completely and then extended to locate

the minimum. The width of the curve is measured at a

power level # = 2 above this minimum. The relative

probe position Aw. is determined by means of two dial-

indicators. These dial-indicators are provided with

O.001-inch graduation. The actual location of the point

of minimum is not very critical since the value of

(w. – Wn+n) is of the order of meters.

The measured value of the attenuation constant of

the two-slot transmission line is 3.41 X 10–3 nepers per

meter which is of the same order of magnitude as that

of a two-wire transmission line.

III. MEASUREMENT OF THE PARAMETERS OF THE

TWO-SLOT LINE BY THE METHOD OF ANALOGY

A. Introduction

As a substitute for the mathematical analysis of a

field problem, the method of field mapping by analogy

is useful when the particular field in question is too

complicated for rigorous mathematical treatment. It is

based upon the correspondence between the steady cur-

rent field maintained by two oppositely charged elec-

trodes immersed in a homogeneous conducting medium

and the electromagnetic field surrounding two similar

conductors of infinite length carrying equal and oppo-

site currents.

Since the potential functions ~. in a conductor and

@a in a dielectric both satisfy Laplace’s equation, and

since the normal components of the electric fields E. at

the boundary between two conductors and Ed at the

boundary between two dielectrics satisfy conditions

that differ only by a constant factor, it follows that these

two cases are analogous. By taking the ratio of the total

4 King, op. cit., p. 275,
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current passing through a volume in a conducting medi-

um, which is bounded by lines of the electric field and

two equipotential surfaces at arbitrary points, and the

total dielectric flux in a similarly-bounded volume in a

dielectric medium, the total capacitance cd between the

equipotential surfaces in the dielectric may be related

to the total resistance Rc between the equipotential sur-

faces in the conducting medium as follows:

(19)

It is assumed that the potential differences between the

eqUipOtE!IItkd SUI_faCeS in the two cases are equal. Ed is

the complex permittivity of the dielectric, a. is the con-

ductivity of the conducting medium.

One method of utilizing the analogy between the elec-

tric field in a conductor and the electric field in a dielec-

tric is by means of the current distribution in an elec-

trolytic tank filled with a conducting liquid. The elec-

trodes to be investigated are immersed in the liquid and

a probe and a bridge-circuit are used to locate the equi-

potential lines. The orthogonal stream lines are drawn

in afterwards to complete the field map. The capacitance

C between two electrodes in vacuum may be evaluated

from the following formula:

4CO E,,(s)ds

C=,o:= 1’ ,

s

(20)

E.ds
b.

where COis the dielectric constant in vacuum, Q is the

total charge on one conductor, IT is the potential dif-

ference between the conductors, En is the normal com-

ponent of the E-field on the surface of the conductor,

J 1. is the contour-integral taken around the surface of

one conductor, and ~~~ is the line-integral taken between

the two conductors.

The magnitude of the electric field Eat any point may

be determined from a field plot by drawing a stream line

through the point in question, and dividing the poten-

tial difference between two equipotential lines lying

equal distances from each side of the point by the length

of the stream line between them. This method gives

good results if the equipotential lines are closely spaced.

The normal components of the electric field En on the

surfaces of the conductor may be obtained by first deter-

mining in this manner the value of the E-field along a

stream line at several points at different distances from

the surface. These values are then plotted against their

respective distances from the surface and the curve

through them extrapolated to zero distance. Since the

electric lines terminate perpendicularly at the conduct-

ing surface, the values so obtained are the desired nor-

mal components of the electric field. It is usually un-

necessary to evaluate the line integral in the denomi-

nator of (20), since the potential difference between the

electrodes can easily be normalized to unity. Thus, the
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capacitance between two electrodes may be obtained

from the distribution of the field and (2o) by numerical

integration.

The substitution of (19) into LC=poeo leads to the fol-

lowing relation:

Thus, the inductance of two conductors immersed in a

dielectric may be obtained from the resistance between

the same conductors immersed in another conducting

medium.

The attenuation constant of a system of two conduc-

tors may be computed from the field distribution in the

following manner. If 61 is the current carried by an ele-

ment of surface of width b on a conductor and of unit

length in the direction of propagation, then the total

ohmic loss per unit length in both conductors is given by

where the surface resistance

is the free-space wave impedance and E = {OH is used. The

contour integrals FCI and J,! are to be taken around

the surfaces of the two conductors, no. 1 and no. 2, re-

spectively. If V is the potential difference between the

conductors, then the power transmitted is given by

The attenuation constant caused by

the conductors is, therefore, given by

.

(23)

the ohmic loss in

P

~=lpL=R8 “Pn’dsIPn’ds
2P2V

—– ~~ (24)

to 6 Esds
J 1.

Thus, the attenuation constant is expressed in a form

which can be evaluated from the distribution of tlhe field

in the conductors. The integrals involved are similar to

those in (20) and (21).

B. Measfwements in the Electrolytic Tank

The analogous electromagnetic fielcl of the two-slot

line was measured in the Harvard Electrolytic Tank,

which has been described in detail.5

In order to determine the field of the two-slot line

with the electrolytic tank, it was necessary to construct

a model electrode that had the same cross-sectiona~ view

as the two-slot line. Since there is no current crossing the

vertical plane of symmetry of the structure, either the

5 P. A. Kennedy and G. Kent, “The Electrolytic Tank, ”
Harvard University, Cambridge, Mass., CrUfI 1,.,ah, Tech. Rept. No.
214; 1956.
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right or the left half may be removed if an insulating

wall is placed along the vertical plane of symmetry. For

the same reason, the lower half of the transmission line

may be omitted when an insulating wall is placed along

the horizontal plane of symmetry, that is, in the slot at

a distance one-half the thickness of the conductor from

the surface. Thus, only one-fourth of the cross section of

the actual two-slot line is required. The model [see

Fig. 9(d) ] was used to obtain the distribution of the

H’-field of a two-slot line.

It was also desired to obtain the distribution of the

E-field of the complementary two-strip line. This could

be constructed from the distribution of the ~-field of

a model which had the same cross-sectional view as the

actual two-strip line [see Fig. 9(a) ]. However, the dis-

tribution of the E-field could also be obtained directly

from the electrolytic tank by using conjugate electrodes.

The conjugate electrodes are obtained from the origi-

nal electrodes [see Fig. 9(a) ] by using insulators in place

of conductors.e These are joined together by a thin insu-

lating wall along the horizontal plane of symmetry

[see Fig. 9(b) ]. A thin conducting surface is placed on

each side of this insulating wall where the excitation is

applied. Evidently the lines of the current maintained

by the conjugate electrodes are orthogonal to those of

the original electrodes

It can be shown that the magnetic field Hl main-

tained with two conducting electrodes immersed in an

electrolyte and the electric field EZ of the conjugate elec-

trodes immersed in the same electrolyte satisfy the

same field equation and boundary conditions. There-

fore, these two fields are analogous to each other and,

consequent y, the conjugate electrodes may be used to

obtain the distribution of the conjugate field of the orig-i-

nal electrodes in the electrolytic tank.

By symmetry, the right half of the conjugate elec-

trode [see Fig. 9(b) ] may be removed if an insulating

wall is erected along the vertical plane of symmetry.

Similarly, the lower half may be removed if a conduct-

ing surface is placed at the horizontal plane of sym-

metry. A conducting surface is required here because

the stream lines are normal to this plane. The conj u-

gate model is reduced to its final form as shown in

Fig. 9(c).

It is interesting to note that the two models, one for

measuring the complementary W-field of the two-slot

line [Fig. 9(d) ] and the other for measuring the electric

field of the two-strip line [Fig. 9(c)], differ only to the

extent in which the insulator protrudes out of the con-

ducting surface. In the cases when the conductors are

infinitely thin, these two models become identical.

Therefore, the same model may be used to measure

either the distribution of 2Y-field of a two-slot line or the

distribution of the -E-field of a complementary two-

s.trip line by using different insulating inserts.

GE. Weber, “Electromagnetic Fields, ” John Wiley and Sons, Inc.,
New Yark, N, Y., vol. 1, p. 186; 1950.
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Fig. 9. Two-strip line model and its conjugate model.

In carrying out the measurements in the electrolytic

tank, the equipotential lines are plotted directly and the

stream lines are then drawn in. An easy way of con-

structing the orthogonal curves is to construct auxiliary

circles7 (see Fig. 10) between the equipotemtial lines

first, and then to draw curves tangent to those circles

and perpendicular to the equipotential lines. Circle-

templates are found to be very helpful for this purpose

and a reasonably good curvilinear graph usually may be

obtained the second trial. A typical example of such a

graph is shown in Fig. 10.

The distribution of the field around the two-slot line

was obtained by the method mentioned above. The nor-

mal component of the electric field at the surface of the

electrode was evaluated according to the method de-

scribed in Section III-A. The capacitance per unit

length, the inductance per unit length and the attenua-

tion constant of the two-slot line were computed from

(20), (21), and (24) by numerical integrations, These

values are listed in Table I.

The capacitance per unit length and the inductance

per unit length of the two-slot line were also determined

by measuring the resistance between the corresponding

electrodes [see (19) and (20) ].

The conductivity of the electrolyte may be deter-

mined from the measured resistance between the inner

and the outer conductor of a model of a coaxial line filled

with a known quantity of electrolyte. The leakage con-

ductance per unit length g of a coaxial cable is given by’

(25)

7 John F. H. Douglass, “Electric, Magnetic, and Thermal Field, ”
vol. 1 ; and “Experimental Graphical Methods: Mapping, ” published
by the author, ch. 3, p. 3–1, 1953.

s King, o@. cit., p. 22.
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Fig. 1O—A typical distribution of the field around a two-slot line.

TABLE I

LINE CONSTANTS OF TWO-SLOT LINE

a 10–3 c 1
nepers/2n ppf/m ph/m

Thin Metal Model:
Theoretical=Analogy from King,

“Transmlsslon-line Theory” 20.2 0.55
Theoretical—Wu and Owyang* 138 27.7.5 0.402
Electrolytic Tank-Flux Plot — 26.7 0.416
Electrolytic Tank—Resistance

Measurement 29.8 0.373
Thick Metal Model:

Theoretical—Corrected for
Thickness (King) t — 37.9 0.293

Theoretical—Corrected for
Thickness (Wu and Owyang*) 44.45 0.246

Measurement at 750 mc 3;4
Electrolytic Tank—Flux Plot 4.21 4K4 0~27
Electrolytic Tank-–Resistance

Measurement — 53.5 0.208

* T. T. Wu, and G. H. Owyang “The approximate parameters of
slot lines and their complements, IRE TRANS. ON ANTENNAS AND
PROPAGATION, vol. AP-6, pp. 49-55; January, 1958.

t The correction for the width of the slot is not included.

where as and al are the radii of the outer and the inner

conductors, respectively, and u is the conductivity of

the material between these conductors. By rearranging

(25) and multiplying the numerator and the denomina-

tor by the factor (azz – a12), the conductivity u of the

medium can be expressed as

(26)

where R is the resistance between the inner and the out-

er conductors and VO is the volume occupied by the

medium between these conductors. The volume VO is

introduced in (26) because it is easier to fill the coaxial-

line model with a definite amount of electrolyte than to

measure the depth of the liquid inside the model.

With the conductivity of the electrolyte and the re-

sistance between the electrodes of the two-slot line

lmodel determined, the capacitance per unit IIength and

the inductance per unit length may be computed from

(19) and (21). These values are listed in Table 1.

c. conclusion

Both the theoretical and the experimental values of

the two-slot line parameters are tabulated in Table I.

Despite the fact that none of the conditions required by

the theoretical analysis is fulfilled exactly by the actual

model under consideration, the two sets of values are

not too far apart. The discrepancies are caused both by

the degree in which the ideal theoretical model is ap-

proximated and by the experimental errors. In the theo-

retical analysis it is required that the width of the slot

be very small compared with the separation ancl that the

metal sheet be relatively thin. The actual line has a

separation of only three times the width of the slot

which is the same as the thickness of the metal sheet.

The theoretical capacitance per unit length for a. thin

conducting sheet may be corrected for the case of a thick

plate, since the total capacitance consists of the contri-

bution from the top and the bottom surface of the con-

ductor and from the surfaces inside the slots. This in-

volves adding twice the capacitance of two parallel sur-

faces of unit length with a width equal to the thickness

of the plate and a separation equal to the width of the

slot. It follows from (20) and (21) that the corrected in-

ductance per unit length may be obtained by multiply-

ing the theoretical value by the ratio of the capacitance

due to the surfaces inside the slots and the total capaci-

tance. These values are also tabulated in Table I.

In the evaluation of the line parameters by the lmeth-

od of field mapping, errors may be introduced in the

process of measurement, construction of orthogonal

curves, evaluation of the E-field (this involves both

graphical errors and errors in the approximation), extra-

polation of the curves, and the numerical integration of

the formulas. If only 1.5 per cent of error is introduced

in each of the above possible sources, 9 per cent of error

is possible in the final result. By using Z1larger model, a

larger tank, a larger map, and a greater amount of labor,

the accuracy of this method may be improved.

The distribution of the electric field about a twostrip

line has also been measured by means of conjugate elec-

trodes. This was found to coincide with the distribution

of the I<-field of the physical dual at distances that are

greater than approximately one-half the width of the

conductor away from the strip. This indicates that the

principle of complementarily g’~o may be applicable

without appreciable error even when the metallic screen

has a finite thickness, if a small region near the strip or

the complementary slot is excluded.

s H. G. 1300ke~, “Slot aerials and their relatic)n to complementary
wire aeriak-Babmet’s principle, ” .7. I.E.E. (London), vol 93, pt.
III A, no. 4, pp. 620-625; 1946.

10S. Uda and Y. Mushiake, “The input impedances of slit. an-
tennas, ” {fThe Technology Reports of the Tohoku uni’~ers~ty, “

vol. 14, no. 1, p. 46; 1949.


