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Complementarity in the Study of Transmission Lines®
G. H. OWYANGt anp RONOLD KING

Summary—The principle of complementarity is applied to the
slot transmission line. The properties of a dual circuit are investi-
gated. The pairs of several possible duals for a given configuration
are correlated and new quantities are defined for use with different
types of circuits. A complete parallelism between the two-wire line
and the two-slot line is established for the ideal cases and is ex-
tended by approximation to include the practical cases.

Measurements were made with a two-slot transmission line and
its associated probing system. The method of testing the line for
balance is discussed. The transverse distribution of the longitudinal
current and the attenuation constant were measured.

The analogy between the steady-state field in a conducting me-
dium and the electrostatic field in a dielectric is investigated. The ex-
pressions for the constants of a two-slot line are given in a form that
permits a ready evaluation from experimental data obtained with the
electrolytic tank. The measured results are compared with theoretical
values.

I. THE PrINCIPLE OF COMPLEMENTARITY
A. Introduction

F two physically different phenomena, 4 and B, are
J:[ described by the same mathematical formulation,

quantitative conclusions may be drawn about 4
from a study of B. This is true of complementary prob-
lems in electromagnetic theory, in which the field about
a configuration 4 of slots in a perfectly conducting in-
finite plane of zero thickness is related to the field about
a configuration B of conducting strips arranged in free
space to correspond exactly to the slots in 4.

B. Duality Between the Electromagnetic Field of an
Electric and a Magnetic Source ‘

Consider groups of perfect electric and perfect mag-
netic conductors in a homogeneous medium character-
ized by the complex permittivity e=e,—jo,/w, and the
permeability u (see Fig. 1). Si, S, - - - are the surfaces
of the electric conductors, S¢*, Sy¥, - - - of the magnetic
conductors. The appropriately generalized field and
continuity equations are

curl E = — J* — jwuH,
curl H = J 4 jweE,
div J + jwp = 0

div E = p/e; (1a)
div H = p*/u;  (1b)
div J* 4 jowp* = 0. (1¢)

(The symbols are defined in Fig. 4.) The boundary con-
ditions on the surfaces of the conductors are

AXE=#4H=0 (2a)
on the electric conductors Sy, S, - - -, and
AXH=#nE=0 (2b)
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on the magnetic conductors S*, S;*, - - -, where n is a
unit outward normal.

It can be shown that an interchange of the electric
and magnetic sources and conductors in a given system
results in an interchange of the E- and H-fields. In par-

ticular, if

Je= — i, TN =y (3a)

p2 = = 7P, p2* = {op, (3b)
where {2=1/9.2=pu/¢, the field vectors are given by

E, = — {H,, H, = 5.E,. (4

The subscripts 1 and 2 refer to cases I and II (Fig. 1),
respectively.

C. Fields with E-symmelry and H-symmetry.

In rectangular coordinates the field vectors E and H
are FE-symmetric (or H-antisymmetric) with respect to
the plane x=0 if

—E(—x), % =x
E(x) =
E.(—x), % =4y orz
H“(—x)7 u=x
H,(x) =
—H,(—x), wu=wyorasz. (5

The shorthand notations F(x) and F(—x) are used for
F(x, v, 2) and F(—x, v, 2). The corresponding field vec-
tors with H-symmetry {or E-antisymmetry) are

Eu(—x), U ==x
Eu(x) =
—E.(—2%), u = yorz,
—H(—=x), u=zx
Hy(x) =
H,(—x), u=yoraz. (6)

With these definitions, any function F(x) may be ex-
pressed as the sum of symmetric and antisymmetric
components in the form F(x) = F,(x) 4+ F.(x) where

Fi(x) = #{#[F.(x) F Fo(—2)] + 9[F,(x) & F,(—2)]
+ 2[F.(x) £ F.(—0)]}. ()

i=s for the upper signs, i=a for the lower signs.
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With (5)—(7) it follows directly that for a structure in
space that is symmetric, the field equations are inde-
pendent of the sign of ¥ and may be separated into
E-symmetric and H-symmetric parts. These are, for
H-symmetry,

curl E,(x) + jouH(x) = — J*(x), (8a)
curl Hy(x) — jweE,(x) =  J.5(x); (8b)
for E-symmetry,
curl E,(2) + jouH,.(x) = — J.*(x), (8¢c)
curl H,(x) — jweE.(x) = J(x). (8d)
It follows from (5) that at x=0,
Eo(0) = Hoy(0) = Hae(0) = 0 9

so that in a homogeneous medium the E-symmetric field
satisfies the boundary conditions (2) of a perfect mag-
netic conductor at x =0, and is not disturbed by the in-
sertion of a plane sheet of perfect magnetic conductor of
arbitrary shape and size in the plane of symmetry.
Similarly, from (6)

Ea,y(o) = Eaz(O) = Hs:c(o) = 07 (10)

so that the H-symmetric field satisfies the boundary con-
ditions (2) of a perfect electric conductor at x=0 and
is undisturbed by the insertion of a plane sheet of perfect
electric conductor in the plane of symmetry.

D. Duality Between a Thin Disk and a Hole in o
Thin Sheet

Let a thin disk made of a perfect electric conductor
be placed in the plane of symmetry (x=0) in a homo-
geneous medium as shown in Fig. 2(a). In this medium
there exists an electromagnetic field maintained by a
symmetric distribution of electric currents J,(x). It fol-
lows from (8) that the field is E-symmetric so that it
behaves just as if a magnetic conductor were located in
the plane of symmetry outside the disk as shown in
Fig. 2(b).

If the electric and magnetic conductors are inter-
changed, Fig. 2(d) is obtained. Since the regions x>0
and x <0 are separated by the sheets of conductor, (3)
may be used with opposite signs in these two regions.
That is, the distribution of magnetic current is anti-
symmetric for the new system, so that it satisfies the
following relations:

Ja4*(x) = §efsa(x); Ja‘l*(“x) = - §8]83(—x)7 (11)

where the subscripts 3 and 4 refer to the systems before
and after the change. Since the excitation is by anti-
symmetric magnetic currents, the field has E-symmetry
and it is immaterial whether the sheet of magnetic con-
ductor is present or not. Therefore, Figs. 2(c) and 2(d)
represent equivalent configurations and the formulas
shown in the figure follow directly from (3) and (4).

The following situations have been shown to be duals:
a thin disk of perfect electric conductor in the plane of

Owyang and King: Complementarity in the Study of Transmission

173 .

Lines

Case T ]
Symmetric Electric Current

Case IV
Anti-Sym. Magnetic Current

<>

/ ’Q A
\ng, (-x) 0 3;3(x) 7:4 (-x

N
r4

~N>

Electric Conductor

(a)

Magnetic Conductor

J%400

N>

(b) (d)
Fig. 2—Duality between metallic disk and hole in metallic screen.
Field: E-symmetry with respect to x==0 plane
Eo(x) = — Ex(—w)  Ho(w) = Ho(—%)

Ey(x) = Ey(—w) Hy(x) = — Hy(—w)
Ey(@) = Bu(—2) H,(@) = — Ho(—9)
x>0 <0
]a4*(x) = {eJss(x) v/m? Jas™(@) = — chsB(x) "-’/m2
Ex) = —GHy(@®) o/m Ey) = {Hix) o/me
Hi(x) = mEs(x) a/m Hy(x) = —nEs(x) o/m
e = é; =n;= L (eg—l—;%) mho?

symmetry of an E-symmetric field that is excited by a
symmetrical distribution of electric currents; an infinite
sheet of electric conductor with a hole that has the same
size and shape as the disk if the sheet is placed in the
plane of symmetry of an E-symmetric field that is ex-
cited by an antisymmetric distribution of magnetic
currents.

In a similar manner, it can be shown that a magnetic
conducting disk in an electromagnetic field that is ex-
cited by symmetric magnetic currents is the dual of a
similar hole in a magnetic conducting sheet located in a
field that is generated by an antisymmetric distribution
of electric currents. The arrangements for these two
cases are shown in Fig. 3.

E. Terminology

Since several dual configurations may be defined for
a given structure, it is desirable to label each type of
network unambiguously. The circuit made of ordinary
electrically conducting strips is the actual electric circuit
or the electric strip circuit, the complementary circuit
made of fictitious magnetic strips is the fictitious mag-
netic circuit or the magnetic strip circuit, and the comple-
nentary circuit obtained by cutting slots in a metallic
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- Fig. 3—Duality between magnetic disk and hole in magnetic screen.

Field: H-symmetry with respect to x =0 plane
E,(x) = Ex(—x) Hy(x) = — H,(—x)

By (x) = — Ey(—=) Hy(x) = Hy(—x)

Ex) = — E(—%)  H.(x) = H(—%)
>0 Jos(#) = —nJoo*(%) ¢/m?  x <0 Juu(®) = nJus*(x)  a/m?
Es(®) = — rHi(x) v/m Ey(x) = {Hs(x) v/m
Hs(x) = 7 E5(x) a/m Hy(x) = — 2Es(x) a/m

1 1 .
nt = — i=——(e=+fi) mho?
o M M Jw

I

surface is the slot circuit. The dual obtained by replacing
a given original configuration of conductors by its com-
plement is called the physical dual. For example, a
metallic disk is the physical dual of a hole of similar
shape in a metallic screen and vice versa. A system of
electric conductors and a similar system of magnetic
conductors are ideal or fictitious duals. A magnetic strip
is the ideal dual of a geometrically identical electric
strip. A new set of quantities is needed for use in fic-
titious duals. These are given conventional names pre-
ceded by the world “magnetic.” An asterisk is attached
to the symbol for such a magnetic quantity for identi-
fication, as shown in Fig. 4.

The quantities used to describe a slot circuit are pre-
ceded by the word “complementary” and their symbols
are primed to distinguish them from those for electric
circuits. The complementary currents and charges are,
of course, those maintained on the complementary con-
ducting surfaces. Complementary quantities are listed
in Fig. 4.

The duality between pairs of circuits and associated
equations is illustrated in Fig. 4. Note that the quantities
listed for the electric and magnetic strip circuits are
duals. Corresponding quantities for the slot and the
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magnetic strip circuits are not duals, but some of them
are equivalent as indicated in parentheses.

F. Generalized Two-Slot Transmission-Line T heory

An ideal two-slot transmission line consists of two par-
allel slots that are cutin an infinitely thin, perfectly con-
ducting sheet of infinite size (see Fig. 5). The ideal (al-
though physically fictitious) dual consists of two parallel
thin strips, made of a perfect magnetic conductor, that
lie in the xy-plane, symmetrically located with respect to
the x-axis and with their centers separated by a distance
b. If the width @ of the strip satisfies the inequalities,
Boa1, b>a?, it is proper to define a total axial mag-
netic current and a total magnetic charge per unit
length and to assume that their transverse distributions
are approximately symmetrical with respect to the
center of each strip. In order to make radiation negligi-
ble, the condition (8o)2<1 is imposed.

At distances from both ends of the transmission line
that are large compared with the separation b of the
strips, the following relations! are obtained for the mag-
netic scalar and vector potential differences V*(w) and
Wo*(w). The same formulas apply to the electric po-
tentials if the asterisks are omitted.

82
— V*(w) — vV *(w) = 0, (12a)
dw?
2
—— WaH(w) — v* W *(w) = 0, (12b)
dw?
1 9
L*w) = — — V*(w) (13)
Z* dw

where v¢*?=y,*z,*. The magnetic line constants (with
asterisk) and their electric duals are summarized as
follows:

20% = ro¥ 4 Jwle* = (jwe/m) In (6/a),

%0 = (jou/m) In (b/a); (14a)
yo* = jwco* = (jwur)/In (b/a),
Yo = go + jwco = (jore)/ In (b/a). (14b)

Note that e=e,—jo./w. The magnetic potentials V*(w)
and W.*(w) for the ideal dual of the two-slot line satisfy
the conventional transmission-line equations just as do
the potentials V(w) and W.(w) for the two-wire line.
The line constants for the magnetic strips are similar to
those for electric strips. The approximate solution for
the magnetic current and scalar potential difference
may be obtained with a corrective terminal-zone net-
work as for a two-wire line.2

Equivalent circuits of the magnetic strip line and the
slot line are shown in Fig. 6.

tR. W. P. King, “Transmission-Line Theory,” McGraw-Hill
Book Co., Inc., New York, N. Y., p. 13; 1955,
2 Ibid., p. 58.



1960

Electric Circuit gr Electric Strip Circuit

Original (or Physical Dual)

Field: E-symmetry with respect to z=0 plane

E-field E v/m
H-field H a/m
Current Density (Volume) J a/m?
Current Density (Surface) K a/m
Charge Density (Volume) P as/md
Charge Density (Surface) n as/m?
Potential Difference

V= f E-dx 7

b

Current

a a
Iy=fﬁXH-dx=—nydx a
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Fictitious Magnetic Circuit or
Magnetic Strip Circuit

y
F
|3
a b ¢ d

Ideal or Fictitious Dual

Field: H-symmetry with respect to =0 plane
Magnetic E-field E*(=H') a/m

Magnetic H-field H*(=E') 9/m

Magnetic Current Density

(Volume) v/ m2
Magnetic Current Density

(Surface) o/m
Magnetic Charge Density

(Volume) o¥ vs/m?
Magnetic Charge Density

(Surface) ¥ vs/m?
Magnetic Potential Difference

= fE*~dx(=I’) o
b

Magnetic Current

d d
Iy*=fﬁXH*~dx=f Kds(=V") o

Impedance Magnetic Impedance
V *
[ — e o f e !
E= ohm z* = I (=91 mho
Capacitance per unit length Magnetic Capacitance per unit length
¢ f/m (=1 h/m
Inductance per unit length Magnetic Inductance per unit length
! h/m ¥(=¢") f/m
Field Equations:  Boundary Conditions: Field Equations:  Boundary Conditions:
VX H=J+ jueE AXH=—K X = — J*—jouE* X H* = K*
VX E= —jouH AXE=0 VX E* = jweH* AXE*=0
V-H=0 - H= V. .H*=0 i - H*=0
1 N —1 1 —1
V'E=—‘~p #t - E=—qg V-E*=—p* fL'E*==-‘—1]*
€ € M 12
Potential Functions: Magnetic Potential Functions:
1 —1
H=—yXA H* = — VX A*
“ ¢
- & xR a = = [ pKar
4r Jy 4 J»
E=—Vo — jud E* = — Ug* — juwA*
1
_— K d ’ C I *K d 4
¢ 4T€£p o 4 vp o
o. L
where €=¢ + —, Ky = — ¢iPok,
Jw R
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Slot Circuit

Physical Dual (or Original)

Field: E-symmetry with respect to z=0 plane

Complementary H-field H'(=E*) a/m
Complementary E-field E'(=H* »/m
Complementary Current

Density (Volume) J a/m?
Complementary Current

Density (Surface) K’ a/m
Complementary Charge

Density (Volume) o as/m?
Complementary Charge

Density (Surface) 7’ as/m?

Complementary Current
I/ = f X H -dx = — f K, dx(=T*) a
b b
Complementary Potential Difference
d
V= f B -dx(=1%) 0
Complementary Transverse Admittance
II
y = 7 (=2%) mho

Complementary Inductance per unit length
V{(=c*) h/m
Complementary Transverse Capacitance per

unit length
(=1

Field Equations:

f/m

Boundary Conditions:

VX H = J 4+ jweE’ AX H = — K’
VX E' = jopH' AX E'=0
V-H =0 A -H' =0
1 -1
V.E=2"0yp B =y
€ €

Complementary Potential Functions:

1
H =-—-VXA
p.

4= f J'Kudr’
Ty

E' = — V¢ — jwA’
1
4re

Ii

¢’ J[; o' Kodr'

R (s =24 (= )2+ (=5

Fig. 4—Complementarity between strip and slot circuits.
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Fig. 5—Arrangement of a two-slot line.

21* E—[*
_L P =L o _L c *
L )
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2 2

Fig. 6—Equivalent circuits of a two-slot line; diagonal shading
indicates magnetic conductors, dots indicate electrlc conductors.

G. Conclusion

A parallelism between the two-slot line and the two-
strip line has been established. Consequently, the well-
known solution of the two-wire line equations, as well
as complementary measuring techniques, may be ap-
plied to the two-slot line. The line parameters that have
been derived are true for infinitely thin slots. However,
it can be shown® that the characteristic impedance Z,,
of a very thin two-strip line is given by

= (/) = (uo/ea) *K (k) /K (K, (15)

3 G. H. Owyang and T. T. Wu, “The approximate parameters of
slot lines and their complements,” IRE TRANS. ON ANTENNAS AND
ProracGaTioN, vol, AP-6, pp. 49-55; January, 1958,
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where K(k) is the complete elliptic integral of the first
kind, k=a,/by is the modulus, k?=1—%? 2a, is the
distance between the inner edges of the strips, and 2
is the distance between the outer edges of the strips.
Subject to the condition that the width of the strips is
very small compared to the distance between centers so
that ao=b,, the characteristic impedance is approxi-
mately

Z1s = (uo/eo) ' In (44A/8), (16)

where 8 =by—a, is the width of the strip and A=b,-+a,
is the distance between their centers. From transmission-
line theory, the characteristic impedance of a two-wire
line of circular conductors is

Zoe = (po/€) '/ (17

where b is the distance between the centers of the wires
and a is the radius of each. The two strip line evidently
behaves like a two-wire line with the same distances be-
tween the centers of the conductors and with wires of
radius equal to one-quarter the width of the strips.

1 1n (b/a)

II. EXPERIMENTAL STUDY OF THE Two-SLoT
TRANSMISSION LINE

A. The Equipment

The two-slot transmission hne is bounded by three
pieces of aluminum sheet and an aluminum strip. The
ground plane has the over-all dimensions of 6 feet 2
inches by 12 feet 1 inch; it is supported horizontally by
a wooden framework at a height about halfway between
the floor and the ceiling. The thickness of the aluminum
is 1 inch; the center strip is £ inch by % inch in cross sec-
tion, 7% feet in length, and supported by a tapered strip
of polystyrene that rests on a wooden support.

Several driving devices for the two-slot line were
tested. A two-wire line drive [see Fig. 7(a)] was found
to be unsatisfactory since the slotted ground plane is an
unsymmetrical load that unbalances the two-wire line
and causes undesirable radiation. A microstrip drive
[see Fig. 7(b)] has the advantage of simplicity in con-
struction and compactness. It consists of a conductor
separated from the ground plane by a thin sheet of di-
electric. The conductor can be either a flat strip or a
wire of small diameter. This conductor is connected to
the center-strip of the two-slot line. A coaxial-line drive
[see Fig. 7(c) ] consists of a piece of coaxial line with its
outer conductor deformed into a rectangular shape so
that it will it smoothly onto the ground plane. A 3-inch
by %-inch Wavegmde was found to be suitable for the
outer conductor; a ¥%-inch diameter brass rod was used
as the inner conductor. Two short-circuiting plungers,

one on each side of the point of feeding, were provided

for matching.

Two different probing systems were employed in the
research: the surface-probe system and the enclosed
probe system. The surface-probe system consists of a
carrier mounted on and movable along a cross-beam,
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Fig. 7—Methods of driving a two-slot line.

the supporting structure of which rolls on circular steel
tracks which are mounted along the sides of the wooden
framework. The connection from the probe carrier to
the probe is made by a section of stiff transmission line
which consists of a piece of a }-inch O.D. brass tubing
slipped over a RG-38 coaxial cable. This brass tubing is
threaded and slotted at the upper end to provide a
height adjustment.

The enclosed-probe system consists of a movable
probe that projects through a slot in a waveguide
(% inch by % inch) which forms the edge of the aluminum
sheet. In this system, only the probe itself is exposed to
the field to be measured; the connection to the probe and
the driving mechanism are either shielded or far away
from the point where the measurement is being made.
Thus the disturbance caused by the presence of the
probing system is minimized and, in addition, the de-
gree of flatness of the metallic sheets has little effect on
the signal picked up by the probe.

B. Balancing the Two-Slot Transmission Line

An efficient transmission line should radiate little
power. It is well known in two-wire line theory that un-
balanced currents radiate. This is also true of a two-slot
line in which the currents on the two side plates are un-
equal at corresponding points. A simple method to de-
termine whether a two-slot line is balanced or not is to
record the response of the detector while the probe is
moved perpendicularly across the line. The response
curve should be symmetrical with respect to the line if
a balanced condition is maintained. However, the sym-
metry of the measured response curve may be affected
by the slight variation in the flatness of the ground
screen so that an alternative method is desirable.
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It is very difficult, if not impossible, to obtain two
exactly identical probes; therefore, the direct compari-
son of the signals picked up by two probes in the two
slots will give little information about the condition of
balance of the line. With two probes which have slightly
different gains, the symmetry of the line current may be
determined by the method of cancellation. This is ac-
complished by adjusting the phases of the signals from
the two probes so that the transmission-line modes are
opposite in phase while the radiation modes, if they
exist, are in phase. Thus a constant resultant signal
along the line means that the line is balanced, and the
existence of a standing wave in the resultant signal along
the line indicates the presence of an unbalanced current
in a radiation mode. The probes used are those enclosed
in the edges of the two sideplates. These probes are
placed at a cross section where the field is strong and
are tuned for maximum signal separately by adjusting
the tuning stubs. The reading on the variable standard
attenuator is recorded. The two circuits are then joined
together through a tee with a line stretcher inserted in
one probe-circuit. The line stretcher is adjusted for
minimum signal and the attenuation of the standard
attenuator is reduced to increase the sensitivity of the
detector. One of the double-stub tuners may also be ad-
justed if it helps to decrease the signal. This procedure
may be repeated until a true minimum is obtained. The
probes are then moved simultaneously along the entire
line and the detected signal is noted. Negligible varia-
tions in the minimum signal were observed and this
minimum signal was more than fifty decibels below (al-
most noise level) the signal level of either one of the
probes. A short piece of lossy cable is inserted in each
probe circuit to reduce the possible coupling between
the probes.

C. The Transverse Distribution of the Longitudinal
Current on a Two-Slot Line

The transverse distribution of the longitudinal cur-
rent on the metallic surface bounding the two-slot line
is measured by moving a surface probe in the direction
perpendicular to the slots. The probe is of the shielded-
Joop type and is oriented with the normal to the plane of
the loop parallel to the direction of its movement. Owing
to the fact that a loop probe measures the average flux
encircled by it, a rectangular loop with round, curved,
short sides is used. A loop of such shape has an advan-
tage over a circular loop in being able to measure the
average field of a point closer to the metal surface with
the same clearance between the probe and the surface.
Both the amplitude and the phase of the current are
shown in Fig. 8.

The current in the center strip is opposite in phase to
that in the side plates and the currents in the two side
plates are in phase. The measurements show the current
to be concentrated near the edges as expected. The
measured apparent decrease in current toward the axis
of the center strip is very sensitive to the height of the
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Fig. 8—Distribution of longitudinal current in a two-slot line

probe. If the maximum amplitude of the longitudinal
current is denoted by I, the amplitude of the current
along the center line of the center strip by I., and the
distance between the center of the loop probe to the
conducting surface by %, then the observed results are
as follows:

h 0.0038x  0.0064x  0.0076
I,
A 0.35 0.82 0.98

At £=0.0038 A, the loop is almost in contact with the
conducting surface. If these current ratios are plotted
against the distance % and the curve so obtained is
extrapolated to the point £ =0, it is found that the ratio
L./ I, of the surface current density in the center strip
is approximately 0.20. From the distribution of the elec-
tromagnetic field it is expected that /,/7, has a mini-
mum at the center of the strip and the measurements do
verify this fact. Qualitatively, one could imagine the
two-slot line to be roughly equivalent to a coplanar
four-conductor transmission line. The four conductors
are located near the edges of the conducting sheets and
the strip. The total currents in the inner two conductors
are equal in amplitude and phase; they are equal in
amplitude as those in the outer two conductors, but op-
posite in phase. The current on the side plates decays
very rapidly as the distance from the slot increases.
This current drops below one-half of one per cent of the
peak value within one-quarter of a wavelength from the
center of the center strip. It is interesting to note that
this decay is almost exponential with distance.

Owing to the nonuniformity in the amplitude of the
field configuration, it is not possible to measure the
transverse distribution of the transverse current by
simply rotating the loop-probe ninety degrees from the
position used for measuring the longitudinal current. In
this position the loop may respond in its transverse di-
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pole mode to the large E-field in addition to the usual
response to the magnetic (or differential electric) field.
This was verified by repeating the measurement with a
dipole probe with the axis of the dipole perpendicular
to the slot; a curve similar to that obtained with the loop
probe was obtained.

D. The Measurement of the Attenuation Constant

It is usually very difficult to measure the attenuation
constant of a low-loss transmission line. However, if the
location of the probe can be measured very accurately
along the line, then the method based upon the width
of the distribution curve near its minimum is applicable.
This method involves the determination of the width
Aw, of the distribution curve at a convenient power
level p (usually p*=2 is chosen) above the minimum
point at two different locations, w, and w,,. The value
of the attenuation constant « is given by?!

B8 Aw, — AWpim

Q= — ———
200 — DV w, — wapm

nepers per meter. (18)
In the evaluation of the attenuation constant, the por-
tion of the distribution curve near the minimum point
is plotted out completely and then extended to locate
the minimum. The width of the curve is measured at a
power level p?=2 above this minimum. The relative
probe position Aw, is determined by means of two dial-
indicators. These dial-indicators are provided with
0.001-inch graduation. The actual location of the point
of minimum is not very critical since the wvalue of
(Wn — Wnim) 1s of the order of meters.

The measured value of the attenuation constant of
the two-slot transmission line is 3.41X 10~ nepers per
meter which is of the same order of magnitude as that
of a two-wire transmission line,

III. MEASUREMENT OF THE PARAMETERS OF THE
Two-SLot LINE BY THE METHOD OF ANALOGY

A. Introduction

As a substitute for the mathematical analysis of a
field problem, the method of field mapping by analogy
is useful when the particular field in question is too
complicated for rigorous mathematical treatment. It is
based upon the correspondence between the steady cur-
rent field maintained by two oppositely charged elec-
trodes immersed in a homogeneous conducting medium
and the electromagnetic field surrounding two similar
conductors of infinite length carrying equal and oppo-
site currents.

Since the potential functions ¢, in a conductor and
¢q in a dielectric both satisfy Laplace’s equation, and
since the normal components of the electric fields E, at
the boundary between two conductors and E; at the
boundary between two dielectrics satisfy conditions
that differ only by a constant factor, it follows that these
two cases are analogous. By taking the ratio of the total

+ King, op. cit., p. 275.
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current passing through a volume in a conducting medi-
um, which is bounded by lines of the electric field and
two equipotential surfaces at arbitrary points, and the
total dielectric flux in a similarly-bounded volume in a
dielectric medium, the total capacitance C; between the
equipotential surfaces in the dielectric may be related
to the total resistance R, between the equipotential sur-
faces in the conducting medium as follows:

€

— = (C4R,.

Te

(19)

It is assumed that the potential differences between the
equipotential surfaces in the two cases are equal. €; is
the complex permittivity of the dielectric, o, is the con-
ductivity of the conducting medium.

One method of utilizing the analogy between the elec-
tric field in a conductor and the electric field in a dielec-
tric is by means of the current distribution in an elec-
trolytic tank filled with a conducting liquid. The elec-
trodes to be investigated are immersed in the liquid and
a probe and a bridge-circuit are used to locate the equi-
potential lines. The orthogonal stream lines are drawn
in afterwards to complete the field map. The capacitance
C between two electrodes in vacuum may be evaluated
from the following formula:

€ E,(s)ds

o P,

f E-ds
be

where € is the dielectric constant in vacuum, Q is the
total charge on one conductor, V is the potential dif-
ference between the conductors, £, is the normal com-
ponent of the E-field on the surface of the conductor,
& 1. 1s the contour-integral taken around the surface of
one conductor, and [4 is the line-integral taken between
the two conductors.

The magnitude of the electric field E at any point may
be determined from a field plot by drawing a stream line
through the point in question, and dividing the poten-
tial difference between two equipotential lines lying
equal distances from each side of the point by the length
of the stream line between them. This method gives
good results if the equipotential lines are closely spaced.
The normal components of the electric field E, on the
surfaces of the conductor may be obtained by first deter-
mining in this manner the value of the E-field along a
stream line at several points at different distances from
the surface. These values are then plotted against their
respective distances from the surface and the curve
through them extrapolated to zero distance. Since the
electric lines terminate perpendicularly at the conduct-
ing surface, the values so obtained are the desired nor-
mal components of the electric field. It is usually un-
necessary to evaluate the line integral in the denomi-
nator of (20), since the potential difference between the
electrodes can easily be normalized to unity. Thus, the

(20)
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capacitance between two electrodes may be obtained
from the distribution of the field and (20) by numerical
integration.

The substitution of (19) into LC = pueq leads to the fol-
lowing relation:

L = ,UORco'a- (21)

Thus, the inductance of two conductors immersed in a
dielectric may be obtained from the resistance between
the same conductors immersed in another conducting
medium,

The attenuation constant of a system of two conduc-
tors may be computed from the field distribution in the
following manner. If 67 is the current carried by an ele-
ment of surface of width s on a conductor and of unit
length in the direction of propagation, then the total
ohmic loss per unit length in both conductors is given by

Rs R:
-—qf Enst + _f Enzdsy
§od a1 §0°J e

where the surface resistance

/2
Rs oy (Ifiﬂ) y §»02

g

Pr

(22)

Mo

€

is the free-space wave impedance and E = {(H is used. The
contour integrals #.; and &2 are to be taken around
the surfaces of the two conductors, no. 1 and no. 2, re-
spectively. If V is the potential difference between the
conductors, then the power transmitted is given by
Vv
— E.ds.
$oJ 1c

The attenuation constant caused by the ohmic loss in
the conductors is, therefore, given by

VI (23)

(24)

Thus, the attenuation constant is expressed in a form
which can be evaluated from the distribution of the field
in the conductors. The integrals involved are similar to
those in (20) and (21).

B. Measurements in the Electrolytic Tank

The analogous electromagnetic field of the two-slot
line was measured in the Harvard Electrolytic Tank,
which has been described in detail.’

In order to determine the field of the two-slot line
with the electrolytic tank, it was necessary to construct
a model electrode that had the same cross-sectional view
as the two-slot line. Since there is no current crossing the
vertical plane of symmetry of the structure, either the

5P. A, Kennedy and G. Kent, “The Electrolytic Tank,”
Harvlarg6University, Cambridge, Mass., Cruft 1.ab. Tech. Rept. No.
214; 1956.
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right or the left half may be removed if an insulating
wall is placed along the vertical plane of symmetry. For
the same reason, the lower half of the transmission line
may be omitted when an insulating wall is placed along
the horizontal plane of symmetry, that is, in the slot at
a distance one-half the thickness of the conductor from
the surface. Thus, only one-fourth of the cross section of
the actual two-slot line is required. The model [see
Fig. 9(d)] was used to obtain the distribution of the
H’'-field of a two-slot line.

It was also desired to obtain the distribution of the
E-field of the complementary two-strip line. This could
be constructed from the distribution of the H-field of
a model which had the same cross-sectional view as the
actual two-strip line [see Fig. 9(a)]|. However, the dis-
tribution of the E-field could also be obtained directly
from the electrolytic tank by using conjugate electrodes.

The conjugate electrodes are obtained from the origi-
nal electrodes [see Fig. 9(a) ] by using insulators in place
of conductors.® These are joined together by a thin insu-
lating wall along the horizontal plane of symmetry
[see Fig. 9(b)]. A thin conducting surface is placed on
each side of this insulating wall where the excitation is
applied. Evidently the lines of the current maintained
by the conjugate electrodes are orthogonal to those of
the original electrodes

It can be shown that the magnetic field H; main-
tained with two conducting electrodes immersed in an
electrolyte and the electric field E, of the conjugate elec-
trodes immersed in the same electrolyte satisfy the
same fleld equation and boundary conditions. There-
fore, these two fields are analogous to each other and,
consequently, the conjugate electrodes may be used to
obtain the distribution of the conjugate field of the origi-
nal electrodes in the electrolytic tank.

By symmetry, the right half of the conjugate elec-
trode [see Fig. 9(b)] may be removed if an insulating
wall is erected along the vertical plane of symmetry.
Similarly, the lower half may be removed if a conduct-
ing surface is placed at the horizontal plane of sym-
metry. A conducting surface is required here because
the stream lines are normal to this plane. The conju-
gate model is reduced to its final form as shown in
Fig. 9(c).

It is interesting to note that the two models, one for
measuring the complementary H’-field of the two-slot
line [Fig. 9(d) | and the other for measuring the electric
field of the two-strip line [Fig. 9(c)], differ only to the
extent in which the insulator protrudes out of the con-
ducting surface. In the cases when the conductors are
infinitely thin, these two models become identical.
Therefore, the same model may be used to measure
either the distribution of H'-field of a two-slot line or the
distribution of the E-field of a complementary two-
strip line by using different insulating inserts.

8 E. Weber, “Electromagnetic Fields,” John Wiley and Sons, Inc.,
New York, N, Y., vol. 1, p. 186; 1950.
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Fig. 9. Two-strip line model and its conjugate model.
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In carrying out the measurements in the electrolytic
tank, the equipotential lines are plotted directly and the
stream lines are then drawn in. An easy way of con-
structing the orthogonal curves is to construct auxiliary
circles” (see Fig. 10) between the equipotential lines
first, and then to draw curves tangent to those circles
and perpendicular to the equipotential lines. Circle-
templates are found to be very helpful for this purpose
and a reasonably good curvilinear graph usually may be
obtained the second trial. A typical example of such a
graph is shown in Fig. 10.

The distribution of the field around the two-slot line
was obtained by the method mentioned above. The nor-
mal component of the electric field at the surface of the
electrode was evaluated according to the method de-
scribed in Section III-A. The capacitance per unit
length, the inductance per unit length and the attenua-
tion constant of the two-slot line were computed from
(20), (21), and (24) by numerical integrations. These
values are listed in Table I.

The capacitance per unit length and the inductance
per unit length of the two-slot line were also determined
by measuring the resistance between the corresponding
electrodes [see (19) and (20)]. '

The conductivity of the electrolyte may be deter-
mined from the measured resistance between the inner
and the outer conductor of a model of a coaxial line filled
with a known quantity of electrolyte. The leakage con-
ductance per unit length g of a coaxial cable is given by?

21

, (25)
/23

In —
231

7 John F. H. Douglass, “Electric, Magnetic, and Thermal Field,”
vol. 1; and “Experimental Graphical Methods: Mapping,” published
by the author, ch. 3, p. 3-1, 1953.

& King, op. cit., p. 22.
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Fig. 10—A typical distribution of the field around a two-slot line.

TABLE 1
Line ConsTANTS OF Two-SLoT LINE

o 1073 c !
nepers/m ppf/m ph/m
Thin Metal Model:
Theoretical—Analogy from King,

“Transmission-line Theory” — 20.2 0.55
Theoretical—Wu and Owyang* 1.28 27.75 0.402
Electrolytic Tank—Flux Plot — 26.7 0.416
Electrolytic Tank—Resistance

Measurement — 29.8 0.373

Thick Metal Model:
Theoretical—Corrected for

Thickness (King)t — 37.9 0.293
Theoretical—Corrected for

Thickness (Wu and Owyang?*) — 44 .45 0.246
Measurement at 750 mc 3.14 — —
Electrolytic Tank—Flux Plot 4.21 49.4 0.227
Electrolytic Tank——Resistance

Measurement — 53.5 0.208

*T. T. Wy, and G. H. Owyang “The approximate parameters of
slot lines and their complements, IRE TRANS. ON ANTENNAS AND
ProracgaTtiON, vol. AP-6, pp. 49-55; January, 1958.

t The correction for the width of the slot is not included.

where a2 and g, are the radii of the outer and the inner
conductors, respectively, and ¢ is the conductivity of
the material between these conductors. By rearranging
(25) and multiplying the numerator and the denomina-
tor by the factor (a.>—a¥, the conductivity ¢ of the
medium can be expressed as

((222 - (112) In *(E'; (26)

g =1
RV(] @y

where R is the resistance between the inner and the out-
er conductors and V, is the volume occupied by the
medium between these conductors. The volume V), is
introduced in (26) because it is easier to fill the coaxial-
line model with a definite amount of electrolyte than to
measure the depth of the liquid inside the model.
With the conductiviy of the electrolyte and the re-
sistance between the electrodes of the two-slot line
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model determined, the capacitance per unit length and
the inductance per unit length may be computed from
(19) and (21). These values are listed in Table 1.

C. Conclusion

Both the theoretical and the experimental values of
the two-slot line parameters are tabulated in Table I.
Despite the fact that none of the conditions required by
the theoretical analysis is fulfilled exactly by the actual
model under consideration, the two sets of values are
not too far apart. The discrepancies are caused both by
the degree in which the ideal theoretical model is ap-
proximated and by the experimental errors. In the theo-
retical analysis it is required that the width of the slot
be very small compared with the separation and that the
metal sheet be relatively thin. The actual line has a
separation of only three times the width of the slot
which is the same as the thickness of the metal sheet.

The theoretical capacitance per unit length for a thin
conducting sheet may be corrected for the case of a thick
plate, since the total capacitance consists of the contri-
bution from the top and the bottom surface of the con-
ductor and from the surfaces inside the slots. This in-
volves adding twice the capacitance of two parallel sur-
faces of unit length with a width equal to the thickness
of the plate and a separation equal to the width of the
slot. It follows from (20) and (21) that the corrected in-
ductance per unit length may be obtained by multiply-
ing the theoretical value by the ratio of the capacitance
due to the surfaces inside the slots and the total capaci-
tance. These values are also tabulated in Table I.

In the evaluation of the line parameters by the meth-
od of field mapping, errors may be introduced in the
process of measurement, construction of orthogonal
curves, evaluation of the E-field (this involves both
graphical errors and errors in the approximation), extra-
polation of the curves, and the numerical integration of
the formulas. If only 1.5 per cent of error is introduced
in each of the above possible sources, 9 per cent of error
is possible in the final result. By using a larger model, a
larger tank, a larger map, and a greater amount of labor,
the accuracy of this method may be improved.

The distribution of the electric field about a two-strip
line has also been measured by means of conjugate elec-
trodes. This was found to coincide with the distribution
of the H-field of the physical dual at distances that are
greater than approximately one-half the width of the
conductor away from the strip. This indicates that the
principle of complementarity®'® may be applicable
without appreciable error even when the metallic screen
has a finite thickness, if a small region near the strip or
the complementary slot is excluded.

® H. G. Booker, “Slot aerials and their relation to complementary
wire aerials—Babinet’s principle,” J.I.E.E. (London), vol. 93, pt.
IIT A, no. 4, pp. 620-625; 1946.

1S, Uda and Y. Mushiake, “The input impedances of slit an-
tennas,” “The Technology Reports of the Tohoku University,”
vol. 14, no. 1, p. 46; 1949,



